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Abstract: A general treatment of f electrons in a strong icosahedral crystal field in endohedral fullerenes is given using the 
unitary group approach. This approach shows the convenience of unitary group approach over the conventional Racah 
method. 
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1. INTRODUCTION 

Since the discovery of the first fullerenes in 1985 [1], the 
fullerene, C60, cages have been the focus of attention for both 
experimentalists and theorists. Endohedral metallofullerenes 
which have atoms inside the C60 cage have attracted wide 
attention due to their properties such as magnetic and 
possible superconducting behaviour. La was the first atom 
trapped in a C60 cage [2]. Polonium is the biggest atom 
which can be embed into this cage [3]. The case of polonium 
suggests that rare earth elements can be placed at the centre 
of the cage. 

C60 molecule is a cage-like structure belonging to the 
icosahedral symmetry [4-5]. The unitary group approach is a 
well established method for the treatment of many particle 
systems [6-8]. The convenience of the unitary group method 
for analytical calculations for octahedral crystal fields has 
already been established [9-10]. 

Zeroth order many electron wave function in a strong 
crystal field can be written as: 

│(γ1)
N

1……(γi)
N

i ; 2S+1ΓM MS α >, where (γ1)
N

1 
……(γi)

N
i is a strong field configuration, MS is the z 

component of the total spin, 2S+1ΓM represents a term 
belonging to the M component of the irreducible 
representation Γ, Ni are the number of particles under 
consideration and α can be an additional index which fully 
specifies the strong crystal field state. The symmetry adapted 
wave functions can be expressed in terms of linear 
combinations of Gel’fand basis functions as represented by 
Young Tableau. The tableau basis was derived from the sub 
group chain of U(2n), where n is the number of independent 
single particle wave functions. For a particular symmetry 
group chain is given by 

U(2n)  U(2) x U(n) 

In the unitary group method, wave functions are 
expanded in Gel’fand bases, the canonical bases of the 
infinitesimal representations for the unitary group as follows: 
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i ; 2S+1ΓM α > = │(γ1)
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i ; [λ] 
ΓM α >  

 = Σρ│[λ] ρ > < [λ] ρ │[λ] ΓM α > 

here [λ] labels the particular irreducible representation of 
U(n) and ρ is the Gel’fand tableau. 

The production of symmetry adapted wave functions is 
the most interesting aspect of the unitary group approach. 
Once the wave functions are known, the evaluation of matrix 
elements of the Hamiltonian can be performed in a number 
of ways [11-13].  

2. ICOSAHEDRAL CRYSTAL FIELD 

In this paper, we treat the case of f electrons in a strong 
crystal field of icosahedral symmetry [14-15]. The seven f 
orbitals, │3m >, m = -3, -2, -1, 0, 1, 2, 3 transform under the 
symmetry operations of Icosahedral group according to the 
irreducible representations g and t2. It is convenient to label 
the following linear combinations as the basis functions for g 
and t2 irreducible representation 

│A > = g1 = (3/5)1/2 Y3,3 + (2/5)1/2 Y3,-2 

│B > = g2 = Y3,-1 

│C > = g3 = Y3,1 

│D > = g4 = - (3/5)1/2 Y3,3 + (2/5)1/2 Y3, -2 

and for T2 we get 

│E > = t21 = - (2/5)1/2 Y3, -3 + (3/5)1/2 Y3,2 

│F > = t22 = Y3,0 

│G > = t23 = (2/5)1/2 Y3,3 + (3/5)1/2 Y3, -2 

It is assumed that the z axis is passing though the two 
vertices along which five fold axes are defined [15].The 
three fold axes join the centers of two opposite faces, while 
the two fold axes join the mid points of two opposite edges.  

It can be seen that the R(3) based symmetry operations of 
the icosahedral group manifest themselves in U(n) as a set of 
permutation operators expressible in terms of the generators 
of the group U(n). The creation ( aA )* and annihilation ( aA ) 
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operators can be treated through unitary group algebra and 
the young tableaux.  

3. THE F2 CONFIGURATION 

When an atom or ion with two electrons in the f-orbital is 
placed in a crystal field of icosahedral symmetry, the 
expected crystal field configurations are: g2, g1 t2

1 and t2
2. It 

is expected that the ground state configuration will be g2 
with two electrons in the orbital g with lower energy. The 
total number of states for all three states is 91. The unitary 
group approach in crystal field theory depends on the sub 
group chain of U(2n), where n is the number of independent 
single particle states. For f shell electrons, n = 7, so the 
group chain will be  

U(14)   U(2)   U(7) 

Above equation implies a set of 14 single particle spin 
orbitals. The final subgroup chain for the system of two f 
electrons in a strong icosahedral crystal field will look like 

U(14)   U(2)   U(7)   U(2)   [ U(4)   U(3)   

R(4)   R(3)   I ] 

The spin orbital and creation operators transform like 
covariant tensor of rank one under unitary transformation. If 
│i > are degenerate, g or t2 type, orbitals and│σ > (σ =   ½) 
denotes spin part of the wave function, then it can be proved 
that Ei,σ

jυ = (aA,σ)
*(aj,υ) satisfy the commutation relations 

[ Ei,σ
j,υ , Ek,σ’ 

l,υ’ ] = δjk δυ,σ’ Ei,σ
l,υ’ – δil δσ,υ’ Ek,σ’

j,υ 

On contraction, one gets the following 

Ei
j = Σσ Ei,σ

j,σ and Eσ
υ = Σi Ei,σ

i,υ 

Which finally satisfy the relation given below 

[ Ei
j , Ek

l ] = δjk Ei
l – δil Ek

j and [ Eσ
υ , Eσ’

υ’ ] = δυσ’ Eσ
υ’ - 

δσυ’ Eσ’
υ 

Ei,σ
jυ , Ei

j and Eσ
υ are the infinitesimal operators for 

U(14), U(7) and U(2). All possible wave functions and their 
labeling for strong icosahedral crystal field are given in 
Table 1. The numbers below the irreducible representations 
are the dimensions.  

It is known that each point group is isomorphic to a 
subgroup of permutation group. It has been established that 
the icosahedral point group, Ih , is isomorphic to an 

Table 1. Classification of f2 Strong Field States 

U(14) U(2) × U(7) U(4) U(3) R(4) + R(3) R(4)R(3) R(3) I 

 

(2) × (0) 

5       1 

 

(2) (1),(1) 

 

(1),(1) 

 

3T1 , 
3T2 

 

 

 

[12]   ×   [0] 

  6            1 
(0) × (0) 

1       1 

 

 ــــــــــــــــــ

 

 ـــــــــــــــ

 

 ــــــــــــ

 

 

 [1]  ×   [1] 

  4          3 

 

 

(3/2) × (1) 

4         3 

 

 

(3/2)  (1),(1/2),(0) 

 

 

(2),(3/2),(1) 

 

 

3H, 3G, 3T2 

 

 

 

[2]   ×   [12]  

 3           21 

 

 

 

[0]  ×   [12]   

   1           3 

 

 

(0) × (1) 

1       3 

 

 

 ــــــــــــــــــ

 

 

(1) 

 

 

3T2 

(3) × (0) 

7        1 

(3) (2),(3/2) (2),(3/2) 1G, 1H  

 

[1]   ×     [0]      

 10           1 

(1) × (0) 

 3       1 

(1) (0) (0) 1A 

 

 [1]  ×   [1] 

  4          3 

 

(3/2) × (1) 

4         3 

 

(3/2)  (1),(1/2),(0) 

 

(2),(3/2),(1) 

 

1H, 1G, 1T2 

(0) × (2) 

1        5 

 

 ــــــــــــــــــ

 

(2) 

 

1H 

 

 

 

[12]           91   

 

 

 

 

[12] × [2] 

 1        28 

 

 

[0]   ×     [2]      

 1             6 

(0) × (0) 

1       1 

 

 ــــــــــــــــــ

 

(1) 

 

1A 
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alternating group A5, which is a sub group of S12. The wave 
functions adapted to the chain mentioned above should be 
concisely denoted by │gN1 t2

N2; [ λ ] Γ M α > in the Gel’fand 
basis of U(7), here N1 and N2 are the number of electrons in 
strong crystal field states g and t2 of icosahedral group. 

In general, a strong crystal field Hamiltonian contains 
crystal field perturbation, Hcr, the electrostatic interaction, Hel 
and the spin orbit interaction, Hso. The matrices for strong 
crystal field Hamiltonian are diagonal and they can be 
treated directly 

< gN1 t2
N2 ; [ λ ]’ M’ Γ’ α’ │ Hcr │ gN1 t2

N2 ; [ λ ] Γ M α > 

 = δij δ[λ][λ]’ δΓΓ’ δMM’ Σi,j Σρρ’ < [λ]’ Γ’ M’ ρ │[λ]ρ’ > x  

 < [λ] ρ │ [λ] Γ M α > < i │ Vicosahedral │ j > < [λ]’ ρ’ │ 

Eij │[λ] ρ > 

 = Σi Σρ { < [λ] Γ M α │ [λ] ρ > }2 < i │ Vicosahedral │i > < 
[λ] ρ │ Eii │[λ] ρ > 

The electrostatic interaction matrix elements are given by 

< gN1 t2
N2 ; [ λ ]’ M’ Γ’ α’ │ Hcr │ gN1 t2

N2 ; [ λ ] Γ M α > 

 = (1/2) Σρ,ρ’ Σi,j,k,l ; [λ] Γ’ M’ α’ │ [λ] ρ’ > < [λ] ρ │ [λ] Γ 
M α > x 

 < ij │1/r12 │ kl > < [λ] ρ’ │( Eik – Ejl – δjk Eil ) │[λ] ρ > 

Here i, j, k and l are single electron orbitals. 

Spin orbit coupling matrix elements can be calculated in 
terms of the Gel’fand states of U(14). The calculation of 
these matrix elements has been discussed by many authors 
[16-17] 

4. SUMMARY 

Classification of symmetrized wave functions in a many 
electron system is the most important step towards the 
understanding of atomic and molecular properties. The 
unitary group approach to many body systems proved to be 

particularly useful for electronic and molecular systems, in 
which case at most two column representations of the unitary 
group U(n) are required. 

We have presented an elegant way of treating the strong 
crystal field of icosahedral symmetry though unitary group 
approach. Endohedral fullerenes doped with f electron ions 
are obvious candidates for magnetic and superconducting 
properties. It requires the calculation of matrix elements of 
product of operators and work related to this matter is in 
progress. 
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